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Abstract

Purpose – The purpose of this paper is to describe a multi-robot solution to the problem of chemical
source localization, in which a team of inexpensive, simple vehicles with short-range, low-power
sensing, communication, and processing capabilities trace a chemical plume to its source emitter

Design/methodology/approach – The source localization problem is analyzed using
computational fluid dynamics simulations of airborne chemical plumes. The analysis is divided into
two parts consisting of two large experiments each: the first part focuses on the issues of collaborative
control, and the second part demonstrates how task performance is affected by the number of
collaborating robots. Each experiment tests a key aspect of the problem, e.g. effects of obstacles, and
defines performance metrics that help capture important characteristics of each solution.

Findings – The new empirical simulations confirmed previous theoretical predictions: a
physics-based approach is more effective than the biologically inspired methods in meeting the
objectives of the plume-tracing mission. This gain in performance is consistent across a variety of
plume and environmental conditions. This work shows that high success rate can be achieved by
robots using strictly local information and a fully decentralized, fault-tolerant, and reactive control
algorithm.

Originality/value – This is the first paper to compare a physics-based approach against the leading
alternatives for chemical plume tracing under a wide variety of fluid conditions and performance
metrics. This is also the first presentation of the algorithms showing the specific mechanisms
employed to achieve superior performance, including the underlying fluid and other physics principles
and their numerical implementation, and the mechanisms that allow the practitioner to duplicate the
outstanding performance of this approach under conditions of many robots navigating through
obstacle-dense environments.
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1. Introduction
This paper discusses an extension of our earlier theoretical work on physics-based
chemical plume tracing (CPT), also called chemical source localization, with teams of
cooperating, autonomous robots, published recently in a special issue of the
International Journal of Intelligent Computing and Cybernetics on swarm robotics
(Spears et al., 2009). Here, we focus on the practical implementation of the collaborative
control and search algorithms, supported by comprehensive and rigorous experimental
evaluation using computational fluid dynamics (CFD) simulations. We refer to the group
of mobile robots as a swarm, and assume very restricted capabilities in terms of each
vehicle’s on-board sensing, communication, and computation equipment. The following
are the three major contributions of this paper:

(1) For the first time, an extensive experimental evaluation is presented comparing
our physics-based CPT strategy, called fluxotaxis, against its leading competitors
under an exceptionally wide range of parametric conditions and performance
metrics. Our approach uses vehicle formations as a fluid flow sensor network by
relying on the robots on-board processor to perform a physicomimetic, i.e.
physics-based, real-time analysis of a chemical plume to determine the optimal
direction to search for the source of a chemical leak. We derived the fluxotaxis
strategy from the fundamental physical laws that govern fluid flow, including
the fluid physics of a chemical emitter (Zarzhitsky et al., 2004, 2005b) Basically,
fluxotaxis uses mobile robots to measure and trace changes in the chemical mass
flux (Section 3) in order to find the chemical emitter. The experimental results
presented in this paper demonstrate the superior performance of our fluxotaxis
approach.

The significance of this outcome is that we can say with confidence that CPT
successes are most likely to come from an algorithm that takes the underlying
fluid dynamics of the chemical plume into account. This conclusion is based on
our thorough literature search (summarized in Section 2), and our experimental
studies (presented in Sections 5 and 6). Furthermore, the physicomimetic
foundation of fluxotaxis makes it amenable to standard mathematical analysis
techniques, which were used by Spears et al. (2009) to explain why the fluxotaxis
approach is more effective at finding and identifying sources of chemical plumes
than biologically motivated CPT methods. Sections 4.6.4 and 4.7.4 describe two
software implementations of fluxotaxis: the first is meant to test a laboratory-scale
prototype of seven CPT robots, and the second is designed for much larger teams
of plume-tracing vehicles. Although the CPT simulation framework we use is
implemented in a 2D surface environment, it should be noted that all of our
analytic and computational analyses are robust and can be extended to three
dimensions, which will result in similar conclusions to the ones presented here.

(2) The extension of CPT capabilities to large groups (swarms) of autonomous,
mobile, cooperating robots is an important novel contribution of this research.
Our project was the first to move CPT into the realm of swarm robotics and to
demonstrate that the effectiveness of CPT is directly proportional to the size of
the swarm. This paper is the first to describe the algorithms that make “swarm
CPT” successful.

Even though the individual robots are limited in what they can do on their own,
operating as a team they can solve a challenging search and localization task.
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This is significant because it reveals the important insight that CPT is inherently a
swarm application, and we provide all of the algorithmic necessities for achieving
“swarm CPT.” Most of the current CPT research is concentrated almost exclusively
on a single or just a few vehicles performing chemical source localization (Li et al.,
2006). In contrast, our work is focused on a fully cooperative, decentralized,
many-vehicle (i.e. swarm) CPT system. Section 6 is dedicated to an extensive study
concerning the effects of increasing swarm size on chemical emitter localization
performance. An important distinction of our implementation is the
physicomimetic approach to vehicle formation control (Spears et al., 2004).
Analysis of our experimental outcomes indicates that formation-based cooperation
between the CPT robots is crucial for improving search performance, and Section
4.1 provides an overview of the robots’ on-board controller.

(3) Another advantage of our approach is its seamless integration of obstacle
avoidance into CPT. Our approach (i.e. fluxotaxis, with physicomimetics as its
foundation) is elegant and scalable. This paper is the first to present our approach
in detail (including the algorithms) along with explanations of how and why
fluxotaxis solves both the CPT problem and the obstacle avoidance problem
simultaneously.

The significance of this elegant approach is its efficiency; it is efficient
because it requires no additional obstacle-handling algorithms. Effectively, our
approach uses the robots’ environment to compute an obstacle-free route. In the
same way that fluids flow around solid obstructions, the swarm moves around
objects in its path, with the virtual vehicle-to-vehicle formation forces mimicking
the role of real molecular bonds. The details of our obstacle avoidance
approach are described in multiple publications (Zarzhitsky and Spears, 2005;
Zarzhitsky et al., 2005a).

Owing to space limitations, we limit this paper to simulation-based aspects of our CPT
work, and our experimental results with CPT in the presence of obstacles are presented
in Sections 5.2, 6.1, and 6.2. The long-term goal of this research effort is a fully
functioning swarm of autonomous robots capable of executing cooperative chemical
source localization in both indoor and outdoor environments. (Spears et al., 2006)
provide an overview of our progress toward this objective.

2. Related CPT research
To solve the CPT problem, one needs to apply a CPT strategy, also referred to as a
“method”, “approach”, or “algorithm” in the literature. We summarize the most popular
CPT strategies in this section; however, for a paper devoted entirely to surveying
the state-of-the-art CPT approaches, see the recent CPT taxonomy by Kowadlo and
Russell (2008).

Some of the earliest solutions to the CPT problem adopted a time-averaged approach
for identifying the chemical. More recent research, however, indicates that mean statistics
converge too slowly to be of practical use (Farrell et al., 2002; Liao and Cowen, 2002).

2.1 Biomimetic approaches to CPT
In 2002, when the Environmental Fluid Mechanics journal published a special issue on
CPT (Cowen, 2002), the papers in that issue were groundbreaking because they laid an
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initial foundation for the field. Like most prior and current CPT strategies, those
presented in the special issue are based on olfactory systems of living organisms,
e.g. insects such as moths, land animals, and aquatic creatures (especially crustaceans).
In other words, the CPT strategies outlined in that special issue are biomimetic, i.e. they
are designed to mimic biological systems. Because biomimetic approaches have
traditionally dominated the CPT literature, we present them first.

2.1.1 Chemotaxis. Chemotaxis is the best understood and most widely applied CPT
strategy. It consists of tracing the chemical, typically by following a local gradient of the
chemical concentration within a plume (Krishnanand and Ghose, 2006; Marques and de
Almeida, 2006). Some of the earliest research on chemotaxis was performed by
Sandini et al. (1993). Among the most extensive applications of chemotaxis are those of
Lilienthal (2005) and colleagues. In some of their work, they show chemotaxis success in
an uncontrolled indoor environment (Lilienthal and Duckett, 2003). They have also
explored chemotaxis in ventilated corridors with weak chemical sources (Lilienthal et al.,
2001).

Although chemotaxis is very simple to perform, it frequently leads to locations of
high concentration in the plume that are not the real source, e.g. a corner of a room (Song
and Chen, 2006). Cui et al. (2004) investigated an approach to solving this problem by
using a swarm majority vote, along with a communication and routing protocol for
distributing information to all members of a robotic collective. However, that is a strong
requirement, and Cui et al. (2004) also make an even stronger assumption that each robot
in the collective has a map of the environment. In addition to the local maxima problem of
chemotaxis, we show in Spears et al. (2009) that a chemotaxis search strategy can fail
near the emitter’s location, due to the fact that, for a typical time-varying Gaussian
distribution profile, the chemical density gradient goes to zero near the distribution’s
peak.

2.1.2 Anemotaxis. The second, most commonly used CPT strategy is anemotaxis,
which is sometimes alternatively called odor-gated rheotaxis. An anemotaxis-driven
robot measures the direction of the fluid’s velocity (typically using an anemometer for
sensing the wind direction and sometimes its magnitude as well), and navigates
“upstream” within the plume (Hayes et al., 2001; Marques et al., 2005; Kowadlo and
Russell, 2006). Here, it should be noted that the observed speed of the airflow is
sometimes considered when calculating the robot’s desired upwind velocity. Hayes et al.
(2001) and Grasso and Atema (2002) have done pioneering work on anemotaxis. The
simulation results of Iacono and Reynolds (2008) show that the effectiveness of
anemotaxis improves with increased wind speed. More complex wind-driven strategies
may be found in Kazadi et al. (2000). Ishida et al. (2006) gain performance
improvements by coupling anemotaxis with vision capabilities.

Anemotaxis can be performed successfully with a single robot, or with a group of
independent robots. Although anemotaxis is very effective for some problems, its
limitation is that it can lead to a wind source that is not the chemical emitter (Zarzhitsky,
2008).

2.2 Hybrid approaches to CPT
More recently, there has been an increasing trend toward the development of hybrid
(also called “multi-strategy”) biomimetic CPT algorithms that combine chemotaxis,
anemotaxis, and other CPT strategies (Ishida et al., 2001; Russell et al., 2000).
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For example, Farrell has combined anemotaxis with other strategies, especially for
recovering a lost plume or for identifying a chemical emitter. His research focuses
primarily on a single autonomous underwater vehicle (AUV) in an aquatic environment
(Li et al., 2006). Jakuba et al. (2005) also use an actual AUV for CPT, in this case for
hydrothermal vent localization. They effectively apply a combination of chemotaxis (to
track non-conservative tracers) and outlier detection, along with an increasingly refined
sequence of nested searches.

Grasso (2001) recommends the use of multiple strategies, where the choice of
plume-tracing strategy depends on the fluid conditions. Likewise, Li et al. (2006)
successfully apply a subsumption-based architecture for an AUV in turbulent waters.
A subsumption-based (also called behavior based) algorithm applies the appropriate
behavior (or strategy) in any given situation.

2.3 Other approaches
A less common, but often effective, CPT strategy is infotaxis. An example is following
the gradient of the chemical intermittency, which is defined as the percentage of time
during which the chemical is above threshold. Liao and Cowen (2002) demonstrate the
advantages of intermittency infotaxis over alternative plume-tracing approaches.
Vergassola et al. (2007) have developed a CPT strategy that locally maximizes the
expected rate of information gain, in an information theoretic sense. Another infotaxis
method is the maximum likelihood approach of Balkovsky and Shraiman (2002).

Kikas et al. (2001) found correlation analyses (another type of infotaxis) to be quite
effective for CPT. Likewise, Weissburg et al. (2002) discovered that the “spatial
correlation between spanwise-separated sensors reveals the relative direction of the
plume centerline very rapidly” and this can lead to a heuristic strategy of following the
plume centerline in turbulent fluids. Martinez et al. (2006) also use a similar strategy.

Balkovsky and Shraiman (2002) as well as Kowadlo and Russell (2008), use a
zigzagging CPT strategy to increase the likelihood of encountering an odor patch in high
turbulence. Kazadi et al. (2000) and Hayes et al. (2001) invented the spiral-surge CPT
algorithm, especially designed for turbulent outdoor scenarios. With their algorithm,
when one robot on the team gets an odor “hit” (above-threshold concentration), it
“surges” (travels) upwind for a set distance. After the surge, if it still encounters odor
then it continues surging. If not, the robot moves in spirals to “cast about” for another
plume hit. It continues making consecutive spirals until another hit, at which point it
surges again. To perform the surge collaboratively with a team of robots, all of the other
robots surge toward any robot that communicates that it got a hit. Lochmatter and
Martinoli (2009) continue to find this algorithm to be effective, to the present.

Early robotic experiments based on solutions to fluid dynamic problems are reported
by Decuyper and Keymeulen (1991). In their approach, a simplified model of fluid flow
forms the basis of a simulated robot’s navigation strategy. This method was inspired by
the fact that continuous fluid flow can be used for iterative optimization of the
local-to-global route-finding task, since the pressure fields responsible for stable
optimal flow paths are void of local minima. A later development of this strategy
by Keymeulen and Decuyper (1994b) also relied on the concepts of a fluid source and
sink, which are used to represent the robot’s position. However, this early physics-based
algorithm was used to navigate inside an obstacle-filled room, and because it does not
involve emitter localization, it only addresses a part of the overall CPT problem.
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2.4 Fluxotaxis for CPT
In order to physically describe a fluid medium, we need to specify its density, velocity,
specific weight and gravity, viscosity, temperature, pressure, and so on. Owing to their
relevance and importance to the goals of CPT, we focus on the scalar density r, which
has the units of mass per unit volume, and the vector velocity ~V ¼ uîþ vĵ, where î and
ĵ are the orthonormal basis vectors along the x- and y-axes in 2D Cartesian space.
Throughout our discussion, we will treat the density, velocity, and other characteristics
of the fluid, i.e. the flow-field variables, as functions of both space and time, that is to
say that the chemical flow is unsteady. Since a moving robot cannot distinguish the
flow of the chemical from that of the carrier fluid, our model uses a single velocity term
~V to denote the direction and speed of the plume. In addition, we use the term “density”
and its symbol r to denote the concentration of the chemical being traced by the robots,
rather than the density of the surrounding medium.

There are several different mathematical formulations of the fundamental physical
laws that govern fluid flow. The differential form of the conservation of mass equation is:

›r

›t
¼ 2~7 · ðr ~V Þ: ð1Þ

By integrating over a differential volume element, one can see that this equation
expresses the physical fact that the time rate of decrease of mass inside the differential
element (left-hand side) must equal the net mass flux flow (right-hand side) out of the
element.

To better understand the physics behind fluxotaxis, consider the divergence of
velocity, ~7 · ~V, which is the time rate of change of the volume of a moving fluid element,
per unit volume. The divergence is the rate at which a fluid expands, or diverges, from
an infinitesimally small region. (A local vector field with positive divergence expands,
and is called a source; a vector field with negative divergence contracts, and is called a
sink.) Of course, in addition to the velocity, we also need to consider the plume’s
chemical density. The key notion we seek is that of chemical mass flux, or mass flux
for short. The mass flux is the product of the (chemical) density and the velocity,
i.e. r ~V. Informally, this is “the stuff spewing out of the chemical emitter,” and this idea
can be formalized as the divergence of mass flux, expressed in 2D as:

~7 · ðr ~VÞ ¼ ~V · ~7rþ r~7 · ~V ¼ u
›r

›x
þ r

›u

›x
þ v

›r

›y
þ r

›v

›y
: ð2Þ

The divergence of mass flux is the time rate of change of mass per unit volume lost at
any spatial position. If this divergence is positive, it indicates a source of mass flux; if
negative, it indicates a sink of mass flux. Sustained (over a period of time) positive
divergence of chemical mass flux (DMF) implies chemical spewing outward from a
chemical source emitter, as opposed to a transient source. A logical conclusion is that
following the gradient of equation (2) will take the robots closer to the source. This is
the basic premise of the fluxotaxis CPT strategy, i.e. to follow the gradient of the
divergence of mass flux, abbreviated

!

GDMF , where the gradient is the direction of
steepest increase. The mathematical formula for the

!

GDMF in 2D is:

~7 ~7 · ðr ~V Þ
h i

¼ ~7 u
›r

›x
þ r

›u

›x
þ v

›r

›y
þ r

›v

›y

� �
:
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GDMF combines information about both velocity and chemical density, in a manner
motivated by the theory of fluid dynamics. This ability to apply established
mathematical analysis techniques to the underlying physical process enabled
Spears et al. (2009) to prove the following useful theorems about fluxotaxis and
chemotaxis CPT algorithms:

. Source theorem. Both fluxotaxis and chemotaxis will move robots toward a
chemical source, i.e. a region with positive chemical mass flux divergence.

. Sink theorem. Fluxotaxis will lead robots away from a chemical sink, i.e. a local
density maximum that is not a true emitter. On the other hand, chemotaxis will
fool the robots by misleading them right into the sink.

. Constant flow speed theorem. Assuming a temporally invariant speed of the
carrier fluid (subject to certain realistic and reasonable preconditions), fluxotaxis
will lead a group of robots toward a chemical source emitter.

. Continuous emitter in diffusion theorem. Assuming a continuous emitter in a
diffusion-dominated environment, i.e. where transport of the chemical due to
fluid flow (also known as advection) is negligible and the chemical density
distribution has a Gaussian profile, both fluxotaxis and chemotaxis will guide
robots toward the emitter. Furthermore, both of these CPT strategies improve
their effectiveness as the robots get closer to the source emitter.

. Puff emitter in diffusion theorem. In a diffusion-dominated environment, with a
single-puff emitter, both fluxotaxis and chemotaxis will correctly direct robots
toward a source emitter. Nevertheless, as the robots get nearer this emitter,
chemotaxis will lose its predictive ability, but the predictive performance of
fluxotaxis will improve. This is because chemotaxis uses only the first derivatives
of the density as guidance, whereas fluxotaxis also uses the second-order spatial
derivatives.

Since anemotaxis is a relatively trivial strategy, i.e. anemotaxis-driven robots simply
travel upwind, we did not include this strategy in our in-depth theoretical analyses. All
of the above theorems have been confirmed with methodical experiments under
controlled conditions, as described in Spears et al. (2009). The source and sink theorems
are particularly important because they are widely applicable – in any fluid and
source-emitter conditions, and both are confirmed by the experimental results presented
in this paper.

3. Modeling chemical plumes with CFD
In order to develop and evaluate a new multi-robot CPT strategy, we needed a way to
create many different types of chemical plumes. Using real chemical pollutants in a
controlled environment was impractical, due to the high costs and the effort involved.
Drawing on the fundamental paradigm shift that occurred in the field of aircraft
design, where the traditional use of experimental wind-tunnel testing has been largely
supplanted by computation methods, we likewise have adopted a strategic decision to
concentrate on computational models of the plume. This section explains the most
important aspects of modeling the properties and long-term behaviors of chemical
plumes using CFD, with a particular emphasis on the plume-tracing task.
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In the context of chemical source localization, it is useful to categorize numerical fluid
simulations as forward and inverse solutions. The “forward” solution first provides a
time-accurate description of the chemical flow, and the “inverse” solution adds a
plume-tracing algorithm for finding the source emitter (i.e. the latter is CPT). We rely on
numerical modeling for the bulk of the CPT strategy design and refinement, which
reduces the number of experiments needed to validate the real robots on chemical
plumes in the laboratory. This section focuses on the forward solution; Section 4 will
address the inverse solution.

To accurately predict fluid behavior, a system of governing equations is typically
solved using computational techniques in order to obtain values of the flow-field
variables at discrete positions in space, i.e. at “grid points.” We construct a mapping
between these grid points and the robots, motivated by our view of a team of cooperating
robots as a distributed, adaptive, computational mesh that jointly senses the flow-field
variables, shares them with their immediate neighbors, and then decides in which
direction to move.

We researched and evaluated several different applications suggested in the
literature, and as the result of this investigation, we selected the software developed by
Farrell et al. (2002) at the University of California, Riverside, which we believe to be the
most practical and well-developed among all of the plume-oriented simulators accessible
to us. It is optimized for computational efficiency, while also serving as a realistic and
faithful model of the environment, i.e. both its transient and steady-state statistics match
closely the observations of actual airborne chemical plumes. A notable feature of the
solver is its multi-scale aspect, including molecular diffusion of the chemical and the
advective transport due to wind movement. Rather than a more conventional,
continuous, time-averaged model, Farrell’s simulator models the plume as a collection of
filament-based emissions of chemical “puffs.” Air currents smaller than the mean
distance between puff centers are modeled as a white noise process. In other words they
“mix” the puff components, mimicking the effect of small scale flow turbulence on the
chemical plume. Air currents on the order of the puff size induce growth and distortion of
the puffs’ template shape, and are therefore modeled using differential equations. Fluid
advection (obtained via a numerical solution) transports each puff as a whole, thus
causing the ensemble of puffs to appear as a meandering sinuous plume, as shown in
Figure 1.

Figure 1.
CPT simulation with a
seven-vehicle
physicomimetic lattice
(black rectangles), no
obstacles, and a
meandering plume
originating in the top left
corner (higher chemical
concentration is shown
with darker colors, and the
arrows denote the airflow)

T = 283 T = 1,470 T = 2,456

Note: The lattice starts out in the lower right corner and uses the fluxotaxis algorithm to successfully trace
the plume to its source (the triangle)
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Because of the open source license for Farrell’s work, we were able to re-implement the
original simulator to better fit our research goals and to adapt it to the most recent and
powerful workstation hardware. Our re-implementation improves the computational
efficiency of the code via memory optimization methods and multi-threading
technologies. Our new fluid model is also more general than that in the original code
because it allows for solid obstacles to be introduced into the flow. It is very important to
emphasize that the model is accurate for a wide range of fluids, and is capable of
resolving dynamics of both gaseous and liquid plumes. The next few sections provide a
more detailed description of the plume-simulation model.

3.1 Advection due to wind
Fluid velocity is generated using a simple procedure. First, random wind vectors are
placed in the four corners of the world. Then, using linear interpolation among the four
corners, new velocity vectors are computed along each of the boundary edges,
such that at the end of this step, wind velocity is completely specified on the world
boundaries (i.e. a Dirichlet condition). Once the boundary conditions are determined, we
use a second-order accurate forward Euler in time, central difference in space numerical
approximation algorithm to calculate wind velocity across the interior points. In the
current version, all grid spacings are uniform, and wind velocity is obtained directly
from the discretization equation.

3.2 Mixing due to random velocity
During each step of the simulation, a random amounts is added to the advective velocity
vector to model the diffusion of the plume about its centerline (i.e. the mixing of the
filaments within the plume). The implementation of time correlation, bandwidth, and
gain in the wind vectors follows the exact specification and code examples provided by
Farrell et al. (2002).

3.3 Growth due to diffusion
It is assumed that each puff of the chemical ejected by the emitter has the same “template
shape,” and for convenience and efficiency, it is treated as a sphere (and approximated
by a disk in 2D simulations) when the total plume density is computed. Thus, the only
parameter that affects the diffusion model is the size of each filament k, with the radius
rkðtÞ at time t specified by:

rkðtÞ ¼ r2=3
o þ gt

� �3=2

ð3Þ

where ro is the initial radius of a puff when it is first ejected by the emitter, t is the age of
the puff, and g is the volumetric diffusion rate.

3.4 Density computation
The plume simulator only needs to keep track of the movement of the chemical puff
filaments, driven by the wind and dispersed by inter-molecular forces. However, since
we need a density map of the entire chemical plume for the tracing experiments, we
determine the individual density contributions of each of the M puffs to the overall
volumetric chemical concentration rðx; y; tÞ at point ðx; yÞ and time t via:
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r ðx; y; tÞ ¼
XM
k¼1

rkðx; y; tÞ;

where:

rkðx; y; tÞ ¼
Qffiffiffiffiffiffiffiffi

8p 3
p

rkðtÞ
3
e ð2Dð2=kÞðtÞ=rkðtÞ

2Þ ð4Þ

and Q is the amount of chemical contained in each puff, Dk(t) is the distance between the
kth puff center at time t and the point (x,y), for which the density contribution of puff k
with the radius rk(t), as defined in equation (3), to the total plume density r(x,y) is
calculated. Farrell et al. (2002) employed this update rule to reduce a spherical puff into a
flattened, disk-like filament, assuming that the chemical has a Gaussian (i.e. exponential)
distribution within the puff. Once the plume concentration is thus calculated for the
entire search area at each time step, we can commence the tracing and source localization
mission with the CPT robots – a task that is explained in detail in the following section.

4. Cooperative swarm-based CPT
The software framework we just described gives us the forward solution, i.e. it supplies
us with large amounts of high-resolution plume data. In this section, we focus on the
inverse solution, and explain how we develop and test new CPT strategies. As we
mentioned in the beginning, even recent CPT strategies appearing in the literature tend
toward either non-cooperative or centralized emitter localization algorithms (Marques
and de Almeida, 2006). However, our goal is the development of a robust, fully
distributed, multi-robot (i.e. swarm) solution to the CPT problem. To meet this primary
objective, two other problems must be solved: the first is the cooperative control of the
swarm, and the second is the extension/adaptation of the CPT strategies to a distributed,
decentralized grid of mobile sensor nodes. The next few sections explain how we
addressed these challenges.

4.1 Swarm control framework of physicomimetics
The physicomimetic design method provides the key control technologies that make it
possible for us to achieve CPT objectives using a mathematically consistent approach.
The name itself unambiguously reflects our goal of cleverly mimicking physical
systems in order to obtain the desired results. Sometimes, we also refer to
physicomimetics as artificial physics because we are not restricted to a slavish
imitation of the real world, but rather we focus on the fundamental operational principles
of real physical systems, while also employing a designer’s license to formulate the rules
in a way that suits the task at hand. In our formulation, virtual physics forces drive a
multi-robot system to a desired configuration, where the virtual potential energy of the
system is minimized. Unlike behavior-based approaches (Balch and Arkin, 1998),
physicomimetics uses an interacting particle-force dynamics simulation. An important
difference from other physics-inspired methods appearing in the literature is the fact
that all of the physicomimetic virtual forces obey real physical laws, such as the
fundamental ~F ¼ m~a (force equals mass times acceleration) principle. Our experiments
show that physicomimetics is a powerful swarm design tool, optimized for self-assembly
and self-repair of robotic lattices, where dynamic grid-like vehicle formations are
constructed via short-range (i.e. local) virtual physics forces.
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A high-level description of the basic physicomimetic control algorithm is
straightforward. During each decision cycle (or time step), every agent observes its
neighbors and the environment. The agent then calculates the virtual forces imposed
upon it by these entities. After taking a vector sum of all forces on the agent, it computes
derivatives to convert the net force into a velocity vector for the agent’s next move.
Agents perform this cycle concurrently in the software simulated instantiation of
physicomimetics. The physicomimetic swarm controller adheres closely to the physical
model that governs the macroscopic behavior of real systems. That is why the equations
of motion for a physicomimetic-controlled vehicle look identical to those commonly
employed in classical particle physics.

Spears et al. (2005c) examined two different physicomimetic control laws in the
context of a distributed surveillance application using a team of autonomous aerial
vehicles. Drawing on their results, we designed a control law based on the Lennard-Jones
potential, which we generalize as:

~Fformation ¼ 1
DðRÞa

r b
2 k

DðRÞg

r d
: ð5Þ

Assuming that all parameters are non-negative, the first term, 1D(R)a/r b describes the
attractive component of the formation force, and the second term, kD(R)g/r d specifies
the repulsive component. Exponential coefficients a, b, g, and d determine the distance
proportionality of the force power law, and in typical usage, a , b # g , d. Optional
scalar coefficients 1, and k are used to linearly scale the attractive and repulsive
components of the formation force, which in turn affects the cohesion of the swarm by
altering the strength of vehicle-to-vehicle bonds. Symbol r denotes the actual distance
between two robots in a lattice, and the function:

DðRÞ ¼
1R d2b

k

� �ð1=g2aÞ

is used to compute the Lennard-Jones separation parameter in equation (5) for a given
desired distance between the vehiclesR, since in the Lennard-Jones control law, the exact
distance at which the formation force achieves equilibrium depends on all of the scalar
and exponential parameters. Figure 2 shows a plot of equation (5), with 1 ¼ k ¼ 1 and
a ¼ 1, b ¼ g ¼ 2, d ¼ 3, so that for this limited, simplified case D(R) ¼ R. The
Lennard-Jones force is mostly repulsive, with a weak attractive component (in Figure 2,
~Fformation is greater than zero for R . 5, albeit by a small amount). Because the attractive
component of the force is small, this control law is especially well-suited for constructing
swarms with liquid-like virtual formation bonds, which is desirable for robots operating
near obstacles or narrow passageways.

4.2 Simulation model assumptions
In order to faithfully emulate our physical vehicle platforms, the CPT robots in simulation
are modeled as homogeneous disk-shaped entities of a fixed radius, so that each simulated
vehicle occupies a small amount of space, which is an important prerequisite for accurate
modeling of obstacle and collision avoidance. The simulator makes a simplifying
assumption that the obstacle and chemical sensors are mounted in the center of the robot’s
circular frame; thus, it is possible to determine the appropriate sensor observations
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that should be accessible to the robot based only on the location of the vehicle, without
having to account for its orientation. To facilitate efficient memory management, we
discretized the simulated environment into an array-like collection of cells. Each of these
cells contains the CFD solution for the chemical plume and the ambient flow, i.e. fluid
velocity ~V and chemical density r, within a specific region of the environment. A typical
test configuration also contains rectangular obstacles; regions occupied by obstacles are
assumed to be free of chemical flow and are impenetrable by the robots. For
measurements of discretized quantities, such as the plume chemical density, the
simulator maps the robots’ real-valued coordinates into the corresponding 2D data array.

As mentioned briefly in the introduction, the long-term goal of this work is a fully
distributed, swarm-based CPT system capable of finding chemical sources in the
context of practical, real-world scenarios. We anticipate that the very first
implementation will consist of ground-based robots and airborne chemical plumes,
partly due to the more accessible logistics associated with the ground/air scenario.
In fact, we have already developed the prototype of a small-scale plume-tracing vehicle
(Zarzhitsky, 2008), and the main reason that our experimental work here is focused on
airborne chemical plumes is the need to establish a baseline for the future swarm
experiments in the laboratory. (Once again, we emphasize that the theoretical foundation
of this work is equally applicable to both 2D and 3D air, ground, and aquatic
surface/sub-surface platforms.) As previously stated, a successful, swarm-based
solution of the CPT problem requires advances in both the control and emitter
localization algorithms, which is what motivated us to organize our experimental work
into two major categories – the first one is focused on robot team control, and the second
is more concerned with the plume-tracing and emitter localization performance of the
different CPT strategies, as explained below.

4.3 Motivation for two different CPT studies
Our literature search (Section 2) failed to find a CPT implementation designed
specifically for cooperative swarms, and even some of the most recent developments in
this area (Balkovsky and Shraiman, 2002; Vergassola et al., 2007), focus on single-robot
solutions. To address this gap, we carried out many comprehensive CPT simulations of

Figure 2.
Lennard-Jones
physicomimetic force law
with R ¼ 5, 1 ¼ k ¼ 1 and
a ¼ 1, b ¼ g ¼ 2, d ¼ 3
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different plume and swarm configurations to study the key aspects of cooperative CPT,
such as distributed sensing, local information sharing, scalability, and robustness.
Thus, we adopted a two-part approach for our investigation. First, we studied the issues
associated with physicomimetic control of CPT robots using a fixed number of vehicles.
Once the control and communication technologies were designed, tested, and evaluated,
we relaxed the fixed team size constraint, and explored scalability and the distributed
aspects of swarm-based CPT as part of our second study. We split each study into two
separate experiments, each one focusing on a particular aspect of the CPT problem, as
explained in more detail below. Our presentation here follows the original, chronological
order of this work, with each new experiment building on the conclusions of the previous
investigation. Prior to presenting the experiments, we first give a concise summary of
the common implementation details that remain the same in each of the two studies.

4.4 Hardware implementation aspects common to both studies
All of the experimental results presented in Sections 5 and 6 are based on a faithful
software simulation of our laboratory plume-tracing robots and their chemical sensor
payload. In prior work, we demonstrated successful cooperative CPT missions in an
unstructured laboratory environment using as few as three robots based on the
Freescale HCS12 micro-controller operating at 25 MHz with 16 KB of random access
memory (Zarzhitsky, 2008). Each robot is equipped with a novel “neighbor” sensor,
which was first developed by Heil (2004) and then refined by Kunkel (2006). This
trilateration-based sensor, where reference separations are determined using a
time-of-flight difference between electro-magnetic and acoustic pulses, allows each
vehicle to determine the distance and bearing to all of its neighbors within a certain
maximum sensor radius Rs. Since our vehicle platform is approximately 0.3 m in
diameter, we limited the vehicles’ localization sensor and communication range Rs to
1 m. Although this value is shorter than what is supported by our laboratory hardware,
it is sufficient to demonstrate behavior of any CPT algorithm that only uses plume
measurements reported by neighboring vehicles. In addition, we superimposed a
data-carrier signal on top of the radio localization beacon, and used a token-based
scheme for network packet collision arbitration (Spears et al., 2006).

Swarm movement and vehicle formations are coordinated via strictly local
interactions between agents, using the physicomimetics framework. We use a
parametrized version of the Lennard-Jones formation force law (5), FLJ, which we
instantiated as:

FLJ ¼
R

r 2
2

R 1:7

r 2:7
:

This equation gives the virtual formation force between two vehicles separated by a
distance of r, for a lattice with the ideal vehicle-to-vehicle separation set toR. We selected
the given numeric values for the exponent coefficients based on the specifications of our
laboratory plume-tracing hardware. In particular, we assumed the maximum robot
speed of just 0.1 m/s, which is significantly slower than the maximum velocity supported
by our laboratory vehicle platform. However, this speed limitation helped reduce the
number of potential vehicle and obstacle collisions, particularly with the large swarm
sizes evaluated in the second study.

Another implementation aspect worth mentioning is the sharing of vector-valued
measurements, such as air velocity or chemical mass flux, between the vehicles.
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To accomplish this task, the robots require a mechanism for establishing a common
reference coordinate frame. We employed a simple and yet effective approach based on
a small digital compass, which allowed us to perform appropriate coordinate
transformations directly in the sensor hardware module, thus simplifying the
implementation of the CPT algorithm (Spears et al., 2006). The model for the chemical
sensor itself is based on the TGS 2620 metal-oxide detector manufactured by Figaro Inc.
(2008). Lastly, although we were unable to find a commercial, off-the-shelf anemometer
that would meet our needs for a small-scale, low-power device capable of interfacing
with the rest of our robot hardware, we based the wind sensor emulation on custom
airflow measuring devices described in the CPT literature (Russell et al., 2000;
Ishida et al., 2001; Harvey et al., 2003).

4.5 Software implementation aspects common to both studies
All of the empirical work discussed in this paper employs the same 2D plume simulator,
i.e. the forward solution. By changing the boundary conditions of the differential
governing equations, we can vary the plume configuration for the two experiments that
make up each study in a physically predictable manner. To ensure that these
simulations have practical CPT relevance, each study includes a balanced mix of
laminar, transitional, and turbulent flows, and all of the source localization results we
report here are based on a methodical combinatorial evaluation of each CPT strategy
against the same, pair-wise matched flow conditions (Zarzhitsky et al., 2004). To further
improve statistical properties of our experiments, we used a high-quality random
number generator to create all of the CPT test environments. We performed several
experiments in each environment and plume configuration with different lattice
parameters, but the CPT objectives remained the same in each experiment – the lattice
must first search the environment for the chemical plume (using the process called
casting), and then determine the location of the chemical emitter (here, we assume a
single, stationary origin for the chemical plume). In other words, each individual CPT
run consists of a search for the chemical plume, followed by the trace to its source
emitter. Because of some important implementation differences, we will explain the
relevant details of each of these steps separately for each study in the next few sections.

Note that each CPT algorithm can be broken down into low-level lattice movement
control routines and emitter localization functions. The low-level routines are
responsible for moving each agent in a formation, executing collision avoidance, and
reporting flow-field variable sensor readings when requested by the on-board CPT
algorithms. Algorithm A1 (Appendix 1) shows the control decisions in every simulation
step. Vehicle velocity is modified in response to the different constraints; thus the call to
ap_maintain_formation will alter each robot’s desired velocity according to the
formation forces acting on the vehicle. The agent_do_cpt_strategy modifies the agents’
velocities according to the current plume-tracing algorithm (implementation details are
presented in the next few sections). Once the new velocity vector of each vehicle is
computed, the final call to move-agents-with-constraints ensures that no agent goes out
of the search area boundaries, that the agents’ velocities are consistent with mechanical
limits, and that there are no collisions between vehicles and obstacles. The robots use a
hierarchical architecture to avoid obstacles; in other words, the output of the CPT
algorithm is ignored when the collision avoidance behavior is activated by the sensor
module in the vicinity of obstacles or other vehicles that are closer than the collision
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threshold separation. Finally, recall from the “Introductions” that one of the main
contributions of this work is that our CPT approach does not require any additional
obstacle-handling algorithms. In particular, obstacles are not specifically identified, nor
are they treated differently from anything else in the environment; any environmental
entity that is too close exerts a repulsive force on the robot.

Once again, notice the important role that formations of robots play in all of our CPT
algorithms. The grid-like arrangement of robots in hexagonal formations is what allows
the vehicles to function as a distributed computer. Earlier (Section 2.4) we explained how
differential equations are used by physicists to model fluid flow. All of the governing
equations are continuous, but in order to solve them numerically, we use a discrete
approximation based on the finite-difference method (Faires and Burden, 2003). Our
algorithms use the robots as sensor nodes to measure both spatial and temporal flow
characteristics at specific points in space. The robot formations are dynamic, capable of
adapting to a local geometry near obstacles, building corners, etc. Since each vehicle is
equipped with a sensor that can estimate the range and bearing to neighboring robots,
each member of the team knows the local topology of the resulting sensor network, and
can “solve” the differential equations using the sensor data broadcast by the nearby
teammates. Thus, the gradients and derivatives in the mathematical description of the
chemical plume can be computed at each time step, and intelligent navigation decisions
made based on this insight. The next few sections focus on the software implementation
of these procedures.

4.6 Software implementation aspects specific to the seven-robot lattice
To better understand the requirements of physicomimetic-based CPT, we started out
with a conceptually simple configuration of seven robots arranged in a hexagonal
formation (with one vehicle in the center of the formation). The hexagonal lattice
geometry was selected because it requires the least amount of sensor information to
construct and maintain (Spears et al., 2004), it represents a fundamental structural
element within larger physicomimetic swarms (Spears et al., 2005a), and it provides a
computationally convenient surface for measuring the volumetric flow of chemical
mass flux (Tannehill et al., 1997). The following few sections give a more detailed
description of the CPT strategies implemented as part of the first single, seven-robot
hexagonal lattice study. All algorithm listings for these implementations appear in
Appendix 2.

4.6.1 Casting algorithm. The sole purpose of the casting algorithm is to help the
robots locate the chemical plume. As is the case with most search algorithms, it is
important to minimize search time by means of an aggressive exploration of the
environment. To help maximize spatial coverage, our implementation (Algorithm B1)
combines the translational side-to-side, up-down motion of the center vehicle with the
periodic expansion and contraction of the outer ring of the lattice in a pulsating motion.
The center robot uses local waypoints to navigate (i.e. the location of each new waypoint
is computed using the position data obtained by the vehicles on the lattice perimeter),
while the expansion and contraction of the lattice is implemented by changing the
desired inter-vehicle separation R on each robot. Each of the CPT strategies (defined
below) uses this casting method to find the plume at the start of the mission, as well as
during the tracing in cases where the robots unintentionally exit or otherwise lose track
of the plume.
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4.6.2 Chemotaxis algorithm. The chemotaxis CPT algorithm is based on the
intuitive fact that the concentration of the trace element increases in the vicinity of the
chemical source; then, one possible way to find the source is to follow the gradient of
the chemical density. The chemotaxis algorithm relies extensively on the neighboring
vehicles to share their chemical sensor information, since the gradient computation
requires the chemical density reading at several spatially separated points.
The implementation of the algorithm in pseudo-code is given in Algorithm B2.

4.6.3 Anemotaxis algorithm. The intuition behind the anemotaxis CPT strategy is to
move the lattice upstream while keeping the vehicles inside the plume. This implementation
of the anemotaxis algorithm (see Algorithm B3 for the pseudo-code) is based on the
examples in the literature; however, one notable improvement is the explicit averaging of the
ambient wind direction, calculated by combining the information about wind conditions as
reported by each robot in the lattice.

4.6.4 Fluxotaxis algorithm. We pioneered an entirely new approach for finding
chemical emitters by using the DMF as a guide. Originally, we postulated this
methodology as a fluid physics-based method for identifying chemical sources. Once we
completed the theoretical analysis of this technique in Spears et al. (2009), we realized
that the chemical flux conveniently combines the information about the chemical
concentration and fluid velocity. In particular, mathematically the DMF can be separated
into two terms:

~7 · ðr ~V Þ ¼ rð~7 · ~V Þ þ ~V · ð~7rÞ: ð6Þ

Therefore, the
!

GDMF is the gradient ~7 of the sum of two terms:

(1) rð~7 · ~VÞ, which is the density times the divergence of the velocity field; and

(2) ~V · ð~7rÞ, which is the flow velocity field in the direction of the density
gradient.

When the chemical plume is divergent, the first term takes precedence in guiding the
robots, similarly to anemotaxis. Otherwise, ~7 · ~V is zero and only the second term, which
is analogous to chemotaxis, matters. Therefore,

!

GDMF automatically recovers
chemotaxis and anemotaxis traits based on the environmental conditions. We extended
and adapted the basic

!

GDMF flux method for traversing and searching an evolving
chemical plume. The fluxotaxis algorithm presented here (Algorithm B4) is one of the
two implemented versions.

This initial version of fluxotaxis emphasizes the interactions between the CPT
algorithm and the physicomimetic control framework that manages the robot lattice,
reflected prominently in the tight integration of the CPT actions (e.g. acquiring plume
sensor readings at different lattice radii, Ri) with the lattice formation control actions.
Although we realize that this coupling does not support our overall goal of a scalable
CPT algorithm for arbitrary-sized swarms, we created this version to study the impact of
the lattice formation on the CPT algorithm’s performance. The chem_region strategy in
Algorithm. B4 contains references to chemical centroids, Cp, which serve as waypoints
for the lattice. The position of these centroids, ~rCp

, is computed as a weighted sum based
on the chemical density measurement reported by each robot. Mathematically, this
computation is:

IJICC
3,4

646



~rCp
¼

xCp

yCp

2
4

3
5 ¼

1

N
PN

i¼1ri

XN
i¼1

ri

xi

yi

" #
;

where N ¼ 7 is the number of CPT robots in the lattice, ri is the output of the chemical
detector on robot i, whose location is (xi,yi).

Note that the implementation of the flux_ring strategy in Algorithm B4 is simply a
discretization of the

!

GDMF technique we first presented in Section 2.4. In addition,
when performing this flux computation, the robots distinguish between incoming and
outgoing fluxes, as determined by whether the chemical flow is into or out of the lattice.
This explicit separation of the two types of fluxes is necessary because in this study,
the single, virtual, hexagonal “surface” constructed by the seven-robot lattice is the
only available control volume suitable for calculating the chemical mass flux. In order
to compute the GDMF, the lattice expands its radius, making it possible to measure the
surface flux across three virtual surfaces of increasing size. Because of the limited
number of CPT agents, the gradient estimate based on the expanding-radius surface is
consistent with the spatial characteristics of our

!

GDMF analysis, but it is not accurate
with respect to time, since the plume continues to evolve and move while the lattice is
undergoing the radial expansion. We address this limitation in our second experiment,
where we extend the fluxotaxis algorithm to work with arbitrary-sized swarms.

In the flux_ring strategy, the robots measure the chemical concentration and the
airflow across each of the outer edges of the lattice, first computing the maximum
incoming flux, and if that metric is below a preset threshold, they attempt to find
the location of the maximum outflux. Note that the incoming flux is indicative of the
condition in which the plume “impinges” on the leading edges of the lattice, thus the
algorithm selects the location of maximum chemical influx in order to keep the robots
inside the plume. Here, we use the term “lattice edge” as a label for the virtual connection
between the outer edges of the hexagon formed by the vehicles, shown with bold black
lines in Figure 3. Fluxotaxis agents compute the chemical mass flux, r ~V, across each of
the outer edges of the lattice using an average of the r and ~V values measured by each
robot, and for the purpose of the flux computation, the distance between the adjacent
vehicles is taken as the “surface area” of unit depth, matching the length of the virtual
edge. If we denote the flux through the virtual edge between vehicle A positioned at
(xA,yA) and vehicle B at (xB,yB) by ~LAB, then the “origin” of this vector (xL,yL) is taken as
the midpoint of the AB edge:

xL

yL

" #
¼

1

2

xA þ xB

yA þ yB

" #
:

Any time the fluid flows out of the lattice, the averaged flux value is treated as the
outflux by the fluxotaxis algorithm, and any time the fluid flows into the lattice, the flux
calculation is treated as the influx. In the actual software implementation, this flux
computation is performed using a standard technique of 2D finite-volume discretization
for general control volumes (Tannehill et al., 1997).
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4.7 Software implementation aspects specific to the large swarm
The second CPT study removes the seven robot restriction. In fact, it makes no
assumptions about how many vehicles are deployed, nor does it attempt to explicitly
control the outermost shape of the virtual surface formed by the vehicles. Instead, it
models a real-world configuration, where each robot makes its navigational decisions
based solely on the local information from the on-board sensors. This means that the
number of neighbors that each vehicle has, the neighbors’ positions and their sensor
readings, as well as the behavior of a given CPT strategy all represent fully dynamic
swarm properties that update continuously throughout the simulation. Once again, we
focus our attention on three different CPT algorithms. Similarly to the previous study,
we adapted the standard implementations of chemotaxis and anemotaxis from the
literature, and extended the fluxotaxis method to an arbitrary-sized and shaped swarm.
The robots’ on-board sensor package consists of an anemometer, which can compute
local wind velocity ~V, and a chemical concentration sensor, which measures and
reports the value of r when it exceeds a predetermined threshold.

During the mission, vehicles form many dynamically stable, embedded hexagonal
formations as they move about the plume-tracing area. These virtual formation bonds
often rearrange or break altogether as the result of obstacle avoidance, and the

Figure 3.
A typical hexagonal
lattice formation assumed
in the first CPT study

R

V

B

A

Notes: The lattice radius, R, is a dynamic parameter that controls
lattice expansions and contractions; the fluid passes through the
virtual surfaces formed between the robots with velocity V; the
chemical mass flux across a lattice edge, rV, can be estimated
via an interpolation of the chemical density and flow velocity
measurements obtained by the adjacent robots
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movement of other neighboring vehicles, as shown in Figure 4. The most important
difference between this implementation of the swarm controller as compared to its
counterpart in Section 4.6 is the lack of waypoint navigation. Instead, the vehicles’
velocities depend on real-time changes in the local swarm formation topology, as well as
the presence of obstacles or the chemical in the vicinity of the robots. All pseudo-code
listings for these implementations appear in Appendix 3.

4.7.1 Casting algorithm. Regardless of the CPT strategy, an identical casting
algorithm is used in each experiment to help the swarm find the plume. For this study,
we implemented a modified casting procedure, detailed in Algorithm C1, that moves the
robot along 458 diagonal paths. Near obstacles and search area boundaries, each vehicle
executes a “bounce-like” reflection maneuver. To ensure the swarm has the ability to
coordinate its movement during casting, we simulate an explicit communication
message, for which we use a recursive local broadcast to synchronize two key casting
parameters, labeled as cast_latitude and cast_longitude in Algorithm C1. Each CPT
agent starts out with the same casting state, and stops casting once the chemical plume is
located. Each robot’s casting state is distinct, so that a part of the swarm that has split up
and moved out of the communication range can cast, while the remaining group can
continue tracing the plume. Vehicles that are within the communication range will
periodically synchronize their casting goals in order to reduce formation stresses.

4.7.2 Chemotaxis algorithm. The chemotaxis algorithm has a simple swarm-oriented
implementation (Algorithm C2): all vehicles broadcast their own chemical sensor
measurements, wait for their neighbors to do the same, and then compute a local
chemical gradient, which acts as a goal force that propels the robots toward regions with
high concentrations of the trace element. This algorithm implementation is a good model
for a scalable sensor network that takes advantage of the automatic aggregation of the
chemical signal that emerges directly from the physicomimetic control laws. Because the
goal forces are balanced by the formation forces, the trajectory of each individual vehicle
is an implicit function of all chemical density measurements collected by the swarm.
This emergent behavior has two notable benefits: first, the sensor fusion method is
implicit in the topology of the network – we never had to design one specifically for this
problem, and second, the movement of each vehicle is minimized because the impact of
the high-frequency transients (noise) in the chemical density signal is automatically
filtered out due to the averaging of the individual robots’ sensor readings. The practical
utility inherent in these swarm properties presents yet another compelling reason
for using the physicomimetic approach.

Figure 4.
CPT trace near obstacles

(dark rectangles)

T = 67 T = 429 T = 1,692 T = 2,115

Notes: Note how the swarm “breaks up” into two groups in order to negotiate the obstacle (second image
from the left), and then “rejoins” due to formation and plume-tracing forces (second image from the right); 
after finding the emitter, the fluxotaxis-controlled swarm surrounds the source and continues to enclose it
throughout the rest of the CPT mission (the rightmost image)
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4.7.3 Anemotaxis algorithm. The anemotaxis method (Algorithm C3) is another CPT
algorithm that benefits from the emergent collaboration in the swarm. Please note that
our “baseline” anemotaxis implementation does not share explicitly any information
between the neighboring agents, nor does it attempt to keep a history of the vehicle’s
locations or plume observations. But it is still able to achieve similar functionality due to
its operation within the lattice formation. Once again, the formation acts as a distributed
sensor fusion network, performing implicit averaging and filtering of the fluid flow
observations throughout the entire swarm.

4.7.4 Fluxotaxis algorithm. In the introduction to this second CPT study, we
mentioned the fact that a large-scale swarm implementation requires a fluxotaxis design
that is somewhat different from the version of the fluxotaxis algorithm we employed in
the first study with a seven robot hexagonal lattice. Before, we had explicit control over
the lattice radius, and it was very straightforward to compute the boundaries of the
virtual flux surface. However, for a large swarm, repeating the same steps leads to an
unnecessary coupling between the agents which we wish to avoid. Again,
physicomimetics inspired our new design, where all swarm control operations are
based on local inter-vehicle forces. Since the physicomimetic virtual forces are modeled
after real conservative forces, such as gravity, there exists a scalar potential function,
U ð~rÞ, so that ~Fformation ¼ 27U . The important idea to keep in mind is that
physicomimetics does not compute the potential function U – only the forces matter.
However, the function U is useful for the long-term, predictive analysis of the
physicomimetic systems. In particular, note that the agents in the swarm implicitly
create the virtual potentials to which they respond by forming the lattice, similarly to
how planetary systems maintain their orbital stability as the result of their own mass.
This is an elegant concept, from both practical and theoretic perspectives, and we
employed a similar methodology for improving our fluxotaxis algorithm.

Starting with the basic theory for the
!

GDMF metric (Section 2.4), we designed the
second version of the fluxotaxis algorithm to control a team of physicomimetic driven
robots. Fluxotaxis requires that the vehicles be able to obtain point measurements of the
chemical concentration, r, and ambient wind velocity, ~V. The vehicles then
communicate this information to their local neighboring robots so that all of the CPT
agents can calculate the chemical mass flux, r ~V. Revisiting the important concepts of
influx and outflux first defined in Section 4.6.4, we must construct a set of virtual
surfaces in order to compute the local surface fluxes that can be used to measure the
volumetric DMF in the vicinity of the CPT robot. The basic operation behind this
procedure is for each agent to compute the product rn ~nn, where rn is the chemical density
measurement collected and reported to the agent by neighbor n, and ~nn is the component
of wind velocity ~Vn (observed by the neighbor) projected onto the neighbor line that joins
the centers of the two agents. Figure 5 shows this situation from the perspective of agent
A0 in the center of the diagram.

The virtual surface, displayed as a solid line through the circular body of a CPT
vehicle in Figure 5, across which the neighbor mass flux, rn ~nn, flows is defined as a
planar region that is perpendicular to the (dotted) neighbor line between the robot pairs.
The orientation of this virtual patch with respect to the A0 agent determines the amount
of chemical mass flux that is associated with the position of each An neighbor vehicle.
Depending on whether the flux is toward or away from A0, the agent will record the
corresponding influx or outflux. For the geometry and the airflow pattern shown in
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Figure 5, from the viewpoint of robot A0, the position ofA1 represents an outflux of r1 ~n1,
and the position of A2 contains an influx of r2 ~n2. The robot’s on-board procedure for
determining the magnitude and the classification of the chemical mass flux at a
neighbor’s location is listed in Algorithm C4.

Because the local plume density measurement, rn, is a scalar value, neighboring
vehicles can simply exchange their individual chemical sensor readings. The software
implementation assumes that the robots can also share vector values, such as
anemometer readings of wind speed and direction. This too is a trivial data exchange if
the swarm shares a common frame of reference; however, standard coordinate
transformations can be applied in a direct manner for cases where only relative
orientation between the neighbors is known (Spears et al., 2006). To obtain ~nn, each robot
must compute the dot product, ~Vn · n̂, of the airflow velocity, ~Vn, and the unit normal
vector for the virtual surface patch, n̂. This is a straightforward computation, because
each virtual surface patch is defined in terms of the neighbor line, that is itself simply a
translation vector between the centers of the two neighbors, so that the unit normal
vector, n̂, can be computed from the information about the relative positions of the
vehicles, which is readily available from the on-board physicomimetic control software.
Finally, the familiar geometric identity, ~A · ~B ¼ jAkBjcosðuÞ is applied to calculate the
~Vn · n̂ dot product.

The dot product method we just described allows fluxotaxis agents to distinguish
between the outgoing and incoming chemical mass fluxes, and similarly to our earlier
fluxotaxis implementation from Section 4.6.4, this version of the fluxotaxis CPT
algorithm first attempts to move the robots in the direction of the neighbor who reported
the maximum incoming flux, if one exists. Otherwise, if none of the neighbor fluxes are
“influxes,” the algorithm will search for a position that reported a maximum outward
flux. We found that if we let the robot lattice act as a control surface in order to compute
the divergence of mass flux, then the amount of influx will gradually decrease

Figure 5.
Structure and position of
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as we approach the chemical source, up to the point where the robots surround the
emitter, after which the total integrated mass flux over the boundaries of the swarm will
appear as a positive outflux (Thayer, 2008). An interesting observation about this
formulation of the algorithm is that by selecting a location with the maximum incoming
or outgoing flux, each robot is actually computing a gradient of mass flux. Since all of the
robots interact with each other through the physicomimetic control mechanism, the
trajectory of the whole formation is the implicit sum of all of these individual goal force
vectors, as explained in Section 4.1. This implicit sum is in fact a discrete approximation
of the chemical mass flux divergence in the vicinity of the robots. Thus, the preservation
of individual formation bonds inside a physicomimetic swarm leads to an implicit
computation of the “source” or a “sink” of the mass flux gradient. Effectively, when
executing this modified version of fluxotaxis, the swarm computes a first-order
approximation of the

!

GDMF metric defined in Section 2.4, and the quality of this
approximation improves as the swarm grows in size (Zarzhitsky et al., 2005a). In the
current implementation, the algorithm deals with cases of zero mass flux or absence of
nearby teammates by delegating to the chemotaxis and anemotaxis strategies,
respectively.

5. CPT study of seven robots in a hexagonal lattice
This first study uses a hexagonal lattice of seven robots. Here, we demonstrate how to
use physicomimetics to navigate the robot formation toward the chemical source. Since
the number of agents is fixed, the swarm control parameters are selected a priori to the
deployment. The study consists of two experiments: the first one is based on
obstacle-free environments and looks at the effect of the lattice radius R on the CPT
performance; the second experiment uses the optimal control parameters found in the
first experiment and introduces obstacles into the search area. In both experiments,
chemotaxis, anemotaxis, and fluxotaxis algorithms are evaluated and compared with
respect to several different performance metrics, as explained below.

5.1 Experiment in an unobstructed environment
5.1.1 Purpose. The goal of this first CPT study is to understand the comparative
performance of three different CPT algorithms as the maximum lattice expansion
factor is methodically varied. Here, the maximum lattice expansion factor is defined as
the largest separation distance between any two vehicles. The physicomimetic control
framework has several parameters that determine key behaviors of the lattice, and we
are interested in the effect that the lattice radius, R, has on the comparative CPT task
performance of each plume-tracing strategy.

5.1.2 Setup and methodology. The test configuration for this experiment covered a
representative mix of laminar, transitional, and turbulent flow regimes, each containing
a dynamic chemical-gas plume evolving over a 930 m2 area. All CPT algorithms were
pairwise compared over consistent plume conditions, meaning that all forward solution
parameters, as well as the lattice initial state were matched for each CPT strategy run, i.e.
we were extremely careful to ensure fair and consistent evaluation of each CPT
algorithm. Note that the plume evolution and lattice movement are concurrent, i.e. the
plume is changing during the tracing. Each CPT run lasted 3,000 time steps, simulating
approximately an hour of plume time. Lattice movement is determined using a set of
waypoints spaced one meter apart. Since only the fluxotaxis algorithm includes a control

IJICC
3,4

652



output for the lattice radius, in order to keep the experimental conditions as similar as
possible, anemotaxis and chemotaxis driven lattices were allowed to expand or contract
their radii at random to increase exploration. The initial size of the lattice radius was
fixed at 0.5 m, and the maximum expansion factor was set at 15, which means that the
maximum lattice diameter was 7.5 m. We selected 35 plume configurations and ten
expansion factors, and then evaluated each combination of the plume and expansion
factor in a separate CPT scenario. For each plume and expansion factor setting, we
selected 200 random locations within the environment where the lattice started the
tracing.

5.1.3 Performance metrics. The evaluation metric consists of two related components:
the proximity of the center vehicle to the true location of the chemical emitter, and a
Boolean measure of emitter containment (i.e. whether the chemical source is inside the
lattice) that we called a CPT success. Both metrics are normalized with respect to the
“optimal” value, with 1.0 being the best, and are calculated at the conclusion of the trial
with a global observer function. Note that the second metric indirectly measures the
impact of the maximum lattice radius expansion factor: a larger radius implies a higher
likelihood of a CPT success.

5.1.4 Results. The simulation results are plotted in Figure 6, showing the average
performance of each CPT algorithm over all plumes with respect to the maximum
lattice expansion factor. The experiment showed that on the proximity metric, a higher
expansion factor allows anemotaxis to beat chemotaxis. This is due to a characteristic

Figure 6.
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oscillation in the anemotaxis lattice at a larger radius: the lattice moves upwind to get
nearer to the emitter, but moves past it, and then exits out of the chemical plume; at this
point, it switches to casting, which causes the lattice to reverse its direction and move
back into the plume, where the anemotaxis upwind-following behavior activates again,
thus resulting in a cycle near the emitter. As mentioned earlier, due to the increased
likelihood of the robots surrounding the emitter when the lattice is allowed to expand,
the CPT success rate for all of the algorithms improves slightly as the expansion factor
is increased. Performance averages obtained in this experiment are summarized in
Table I. A Wilcoxon rank sum test indicated a statistically significant difference at the
p , 0.05 confidence level in the fluxotaxis performance results as compared to those of
chemo- and anemotaxis.

5.1.5 Conclusions. The plots in Figure 6 and the data in Table I support our claims
regarding the advantage of employing the fluxotaxis strategy over the alternative
algorithms – fluxotaxis shows a consistent improvement in being able to locate the
emitter. The data show that at the end of the mission, it located and surrounded the
chemical source in 75 percent of the trials, as compared to its closest competitor
chemotaxis, which only contained the source in 32 percent of the trials. Likewise, it
achieved a proximity rating of 92 percent, compared to the 68 percent for the anemotaxis
technique.

5.2 Experiment in an obstructed environment
5.2.1 Purpose. This study looks at how different CPT algorithms perform when
obstacles are introduced into the environment. Our aim is to understand how the three
different plume-tracing strategies operate under varying environmental conditions.

5.2.2 Setup and methodology. In the previous experiment, in which we studied CPT
performance as a function of the maximum lattice expansion radius, we demonstrated
that the physicomimetics framework supports a large range of lattice radii. In this
experiment, we fixed inter-vehicle spacing to 3 m, and focused on two different aspects
of the mission: the number of obstacles and the starting position of the lattice. For each
CPT trial, we generated 500 random vehicle starting locations, which we selected from
a uniform distribution of positions mapped into an emitter-centered polar coordinate
system. The initial lattice distance from the emitter varied from 0 to 25 m; the upper
bound of 25 m helped minimize the duration of casting, and allowed us to focus on the
behavior of the CPT algorithms instead.

We evaluated the effect of obstacles on CPT algorithms by solving fluid dynamic
equations in varied environments with the following configurations: no obstacles, one
3 £ 3 m obstacle (1 percent obstacle coverage), four 1.5 £ 1.5 m obstacles (1 percent
coverage), two 3 £ 3 m obstacles (2 percent coverage), and with eight 1.5 £ 1.5 m

CPT algorithm Emitter proximity Localization success

Anemotaxis 0.6843 ^ 0.0291 0.0667 ^ 0.0362
Chemotaxis 0.6745 ^ 0.0049 0.3184 ^ 0.0132
Fluxotaxis 0.9235 ^ 0.0089 0.7460 ^ 0.0250

Notes: Data are averaged over 35 plumes and all parameter variations; higher values indicate better
performance

Table I.
CPT algorithm
performance on a lattice
of seven robots, showing
mean ^ standard
deviation
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obstacles (2 percent coverage), with a total of 150 different plume and obstacle
configurations. CFD parameters were the same for each obstacle course, but the chemical
plumes in each new environment varied due to the size and placement of the obstacles.
As before, all of the experimental conditions were carefully controlled to ensure
consistent and unbiased evaluation of each CPT method. Since chemical contamination
(e.g. a toxic spill) typically precedes the start of CPT efforts, we “turned on” the chemical
emitter for 3,000 time steps (about an hour of real plume time) before activating the CPT
robots. Each plume then evolved for an additional 7,000 steps as the CPT robots traced
the chemical cloud to its source.

5.2.3 Performance metrics. For this experiment, we studied emitter localization
characteristics of each CPT method as a function of the initial distance between the
lattice and the chemical source. Therefore, this second portion of the seven-robot study
required a new performance metric to indicate how well a given CPT strategy localizes
the source. We called this a stability metric to differentiate it from the end-of-the-run
CPT success measure used in the previous experiment. This criterion is a helpful
evaluation tool because it measures consistency of the source localization solution
obtained with each CPT algorithm. To measure this benchmark in simulation, we
again used a global observer function, which computed the fraction of simulation time
the plume emitter was contained inside the lattice.

5.2.4 Results. Results of this test are shown in Figure 7, showing that fluxotaxis
achieves an average emitter containment rate of 49.1 percent, which is significantly
higher than that of anemotaxis (the mean of 8.4 percent) and chemotaxis (the mean of
7.2 percent).

Since anemotaxis always moves upwind in the plume, it often drives past the emitter,
and then spends over 90 percent of its mission in a cycle of first moving upstream in
the plume, and then switching to casting after a subsequent miss of the emitter.

Figure 7.
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This explains why the anemotaxis performance is low even when it begins its tracing
next to the emitter, and why the performance curve deteriorates with the increasing
starting distance to the emitter. Chemotaxis does somewhat better when it starts out
near the emitter, but its performance falls off rapidly, caused by the increase in the
number of obstacle-induced local density maxima. However, even when chemotaxis
begins its tracing within ten feet of the emitter, the average containment in this case is
still only 14.3 percent, which means the lattice fails to find the source more than
85 percent of the time. The poor chemotaxis performance is caused by periodic
turbulence and the resulting variance (e.g. wind gusts) in the flow, both of which give rise
to a “shedding” effect, that manifests itself when large “chunks” of the plume in the
vicinity of the emitter are “torn off” and carried away from the source. A Wilcoxon rank
sum test applied to each experiment showed that the CPT performance improvement
obtained with fluxotaxis is statistically significant in 94 percent of the experiments at
p ¼ 0.01 confidence level.

5.2.5 Conclusions. Fluxotaxis consistently and significantly outperformed
chemotaxis and anemotaxis algorithms on the emitter containment metric. This
experimental outcome is consistent with the theoretic predictions of the source and sink
theorems we introduced in Section 2.4. Turbulence is the reason why fluxotaxis does not
achieve a 100 percent emitter containment when it starts with the emitter already
enclosed, because periodic wind gusts transport large portions of the ejected chemical
away from the emitter, and the moving mass of chemical appears as a temporary
pseudo-source. Future work on improving the fluxotaxis algorithm will address this
detrimental impact of turbulence. In addition, we found that the CPT algorithms usually
manage to navigate around obstacles well before active collision avoidance even
becomes necessary. The obstacle avoidance problem is often simpler within a chemical
plume, since the lattice follows the plume as the carrier fluid flows around the obstacles.
This confirms the observations of Keymeulen and Decuyper (1994a), who found that
using the direction of fluid flow is an efficient and successful strategy for navigating out
of maze-like areas. This is an important and relevant observation, since CPT systems are
deployed in hazardous areas, typically littered with debris inside unmapped
passageways.

6. CPT study of a large decentralized swarm
Section 5 described our first CPT simulation study, which used a fixed-size lattice of
seven vehicles. The results were definitive – our fluxotaxis approach is an
improvement over both the chemotaxis and anemotaxis CPT methods in terms of
being able to find the emitter (what we previously called a CPT success), and in being
able to consistently contain the chemical source within the bounds of the seven vehicle
hexagonal formation (a property we called an emitter containment). Of course, one
notable limitation of the previous implementation is its dependence on a particular
lattice configuration – all of the performance metrics, as well as the CPT algorithms
themselves, assumed that the “swarm” consists of exactly seven robots, and the
vehicles had to maintain the hexagonal formation at all times in order for the
experiments to be valid. Therefore, we carried out a follow up CPT study to answer an
important question: does fluxotaxis scale to an arbitrary-sized swarm? Experimental
results we present in this section show that fluxotaxis retains its CPT advantage
across a wide range of swarm sizes and environment conditions.
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In this study, we rejected any a priori knowledge regarding the number of agents
participating in the plume-tracing task, along with any restrictions on the swarm
topology. This is a practical requirement, because if we consider the logistical concerns
of operating a large number of robotic vehicles out in the field, we can no longer justify
our earlier assumption of the swarm layout.

6.1 Experiment with increasing number of obstacles
6.1.1 Purpose. For the first experiment in this study, we measured performance of
modified, swarm-oriented, fully decentralized CPT algorithms on different plume
environments with many different obstacles. As before, our motivation here is to
demonstrate how the three different approaches to chemical source localization compare
against each other across a range of plume and search area conditions.

6.1.2 Setup and methodology. We simulated emitter localization by swarms
controlled by random casting, chemotaxis, anemotaxis, and the fluxotaxis algorithms on
a suite of 81 simulated plume scenarios with physically distinct flow configurations,
each containing an airborne chemical plume evolving over a large 8,360 m2 area. As in
the previous study, we picked a range of CFD boundary conditions that produced an
even mix of laminar, transitional, and turbulent flows in randomly created environments
with: no obstacles, with nine, eighteen, twenty-seven, thirty-six 1.5 £ 1.5 m obstacles,
and with two, four, seven, and nine 3 £ 3 m obstacles.

The trace chemical was ejected for 3,000 simulation steps (about an hour of real plume
time) before a swarm of CPT robots was first deployed, and the plume tracing mission
lasted for an additional 7,000 steps (corresponding to a realistic two-hour CPT time
frame). The initial swarm starting location varied from a position precisely over the
emitter to 60 m away from the emitter in 1-m increments (compare this with the 25 m
maximum we examined as part of the first study in Section 5.2). We varied the number of
vehicles in the swarm from seven to 70 robots, with a total of ten different swarm sizes
per plume, obstacle, and initial starting location combination. Thus, a total of 40,500
CPT evaluation runs were performed as part of this experiment. For every new
evaluation run, we made sure that the plume and the search area configuration were the
same for all CPT strategies, thus all observed differences in the swarm’s performance are
the result of the different navigation paths computed by the individual strategies.

6.1.3 Performance metrics. In the first CPT study, we took advantage of the fact that
the hexagonal lattice of seven robots would surround the chemical source in a very
predictable manner, and all of our CPT performance metrics were based on this
assumption. However, for this study, we have very little a priori knowledge of how the
swarm will approach the emitter. Because each CPT vehicle functions as a completely
independent entity, the old performance metric of emitter proximity based on the “center”
robot in the lattice no longer makes sense, since there is no “center” in a decentralized
swarm. Likewise, the containment metric needs to be adapted for very large swarms,
otherwise we cannot measure the CPT performance as a function of swarm size.

Therefore, we developed two new CPT performance metrics that evaluate the
swarm aspect of our physicomimetic solution. The first metric, called the arrival time,
is designed to evaluate the speed with which the swarm locates the source. The arrival
time value is equal to the earliest time step of when a vehicle from the swarm first
drives within the sensor range, Rs, of the chemical emitter, and lower values indicate
better CPT performance. Note that we do not assume that the vehicle somehow knew
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that it passed close to the emitter, just that it physically came within a short distance of
the chemical source. Because in order to “succeed” on the arrival time metric the vehicle
only needs to be near the emitter, we also evaluated the casting strategy as one of the
CPT “algorithms.” Because casting is a random method, this comparison provides us
with the baseline of the performance level that can be achieved via an uninformed
search of the environment. We expect all of the CPT strategies to do better than just a
random search of the simulated world.

The second metric, which we call the emitter localization frequency or localization
count is a measure of how many vehicles drove within the sensor range,Rs, of the emitter.
This is a cumulative metric – it simply sums up the number of vehicles located within
the circle of radius Rs for each time step in the simulation. We again use the score of our
random casting strategy as the baseline for this characteristic, with the expectation that
all three of our CPT algorithms will perform better than the random search.

6.1.4 Results. Results for the arrival time performance metric (i.e. the elapsed time
before the first vehicle detects the emitter) are plotted in Figure 8, and are broken down
by the type of obstacle course in Table II. The number of times that the chemical
emitter was successfully localized by swarm vehicles is shown in Figure 9, with the
performance break down based on obstacle coverage presented in Table III.

Our first observation from the two figures is that only fluxotaxis performs well on
both metrics: it combines the speed performance demonstrated by anemotaxis with
the localization frequency advantage shown by chemotaxis. Examining the performance
data in Figure 9, we conclude that CPT is inherently a swarm application. We base this

Figure 8.
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Obstacle coverage
CPT algorithm 0.0% 0.25% 0.50% 0.75% 1.0%

Fluxotaxis 1,508 1,523 1,615 1,572 1,610
Anemotaxis 1,885 1,760 1,725 1,700 1,731
Chemotaxis 2,451 2,603 2,887 2,437 2,778
Casting 5,292 4,848 4,739 4,498 4,490

Table II.
Arrival time metric of
each CPT algorithm
versus the world obstacle
coverage, averaged over
ten swarm sizes, 50
starting locations, and 81
plumes
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claim on the improvement in the consistency of the emitter localization, as captured by
the localization frequency metric, for the fluxotaxis and chemotaxis algorithms observed
as the result of the increasing swarm size. However, the poor emitter localization
performance of the random casting algorithm suggests that the robot collective must be
managed in order to realize the performance benefit of the swarm approach – simply
adding more vehicles to the group is not sufficient to improve its performance.

The large difference in performance between fluxotaxis and anemotaxis, seen in
Figure 9, can be attributed in part to the fact that the baseline implementation of the
anemotaxis algorithm does not have a bias to direct the vehicles toward the emitter –
instead, the upwind follower reaches the emitter in approximately the same time as does
fluxotaxis (which can be inferred from Figure 8), but the swarm continues to move
upstream, and thus moves past the emitter. After losing the emitter, the anemotaxis
swarm switches to the casting behavior in order to find the plume, which is why its
localization performance is similar to that of the casting strategy. In the literature,
several heuristic methods have been suggested to address this problem. However,
we view the fluxotaxis approach of seeking out the chemical mass flux as a superior
method, because our physics-based approach does not require additional heuristics
to achieve CPT goals.

Data in Tables II and III provide the evidence for the robustness and scalability of the
physicomimetics framework, which are manifested in the framework’s ability to adapt
in a dynamic environment. The force law parameters are the same in each experiment,

Figure 9.
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but the control software manages the swarm with good proficiency regardless of the
number of agents or the size and number of obstacles.

6.1.5 Conclusions. The overall CPT performance of each algorithm in this experiment
must be interpreted in the context of the type of plume information that is extracted and
then acted upon by the given CPT strategy. In other words, the variations in the rates of
success for each algorithm are due to the natural characteristics of each CPT approach.
For instance, for the random casting strategy, the arrival time result improves with the
increasing obstacle coverage because greater obstacle coverage implies less open area
that the random searcher has to explore. On the other hand, performance of the
chemotaxis strategy on both metrics is generally worse in the environments with more
obstacles. This is a direct consequence of the fact that obstacles create local maxima in
the density profile of the plume, because the chemical has a tendency to slow down and
build up in the flow that impinges on the obstacles’ edges. From the mathematical
perspective, each obstacle induces a local chemical sink, and these sinks mislead the
naı̈ve chemical gradient follower. This behavior is the direct consequence of the
chemotaxis algorithm’s reliance on first-order derivative of the chemical concentration,
which does not contain enough information to distinguish a true chemical source from
an obstacle induced sink. The sink theorem we introduced in Section 2.4 provides a
precise mathematical formulation for describing and detecting such regions with high
chemical concentration that do not contain the emitter. The time spent by chemotaxis
investigating these temporary “pseudo-sources” is reflected in the algorithm’s increased
localization time, and it also shortens the time that the chemotaxis agents spent in the
vicinity of the true chemical source. However, when operating near the emitter,
chemotaxis is expected to perform well on the localization frequency metric, since the
peaks in the chemical concentration landscape are in fact close to the real source (see the
source theorem in Section 2.4). The fact that fluxotaxis consistently outperforms the
other two CPT methods on both performance metrics is a straightforward validation of
our argument in Section 4.6.4, and equation (6) shows how the fluxotaxis algorithm can
automatically select the best plume characteristic (i.e. the density gradient or the flow
direction) to follow in accordance with the changing environmental conditions.

6.2 Experiment with increasing swarm size
6.2.1 Purpose. Results of the previous experiment showed that the CPT performance is
affected by the size of the swarm to a much greater degree than it is influenced by the
obstacle configuration. Therefore, in this final experiment, we increased the number of
CPT robots in the swarm to determine what performance gain can be realized with very
large swarms.

6.2.2 Setup and methodology. We simulated ten different flow conditions, with the
chemical emitter located inside a 8,360 m2 region. As before, a choice of appropriate
boundary conditions resulted in a diverse mixture of airflow patterns. Each
plume-tracing area contained ten 1.5 £ 1.5 m randomly placed obstacles. Similarly to
our previous experiments, the chemical emitter activated 3,000 simulations steps
(an hour of real plume time) before the CPT swarm deployed. We advanced each plume
for 7,000 steps (corresponding to a two-hour time frame), and recorded the emitter arrival
time and localization statistics for each CPT algorithm.

All of the data in this experiment come from matching evaluation runs for each
CPT algorithm and the casting strategy on a large set of CPT scenarios, consisting

IJICC
3,4

660



of 15 swarm sizes (ranging from ten to 150 vehicles) and 30 different starting locations
per each swarm size. The initial position of the swarm is selected at random, with the
starting distances ranging from 0 to 60 m away from the emitter. As was the case in all of
the other experiments, we made sure that the chemical plume, the search environment,
and the evaluation criteria were identical for matching comparisons of the CPT
strategies’ tracings.

6.2.3 Performance metrics. Swarm performance in this experiment was evaluated
using the same arrival time and localization frequency metrics first defined in
Section 6.1.3.

6.2.4 Results. The performance of each CPT strategy as a function of the number of
robots is shown in Figures 10 and 11. Table IV lists the cumulative performance average
for each CPT method. Results of this experiment confirm that an increase in the size of
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the swarm improves both the speed and accuracy of the source localization. Each
algorithm we tested displayed improved performance on both evaluation metrics, and
we want to point out that the fluxotaxis performance curves clearly show the algorithm’s
ability to satisfy the CPT objectives in a stable and predictable manner. At the same
time, note that chemotaxis is the most vulnerable of the CPT techniques, so that even the
uninformed (i.e. random) world exploration yields better arrival time results than the
greedy gradient-following chemotaxis. The chemotaxis-driven swarm is frequently
misled by the local concentration maxima around obstacles, thus lowering its
performance on the localization time metric. The anemotaxis approach initially
outperforms simple casting in terms of the arrival time, but this advantage decreases as
the swarm size increases. This finding can be explained by the fact that instantaneous
wind velocity is generally a poor indicator of the true direction of the plume’s source, and
as the fluid periodically changes the flow direction, the anemotaxis strategy is misled by
the isolated pockets of a fragmented plume, resulting in a time-inefficient zigzag plume
traversal pattern often observed in insects (Grasso, 2001). This is an important
observation because it shows that just adding more sensors and robots into the swarm is
not enough, and once again we conclude that the sensors must be managed in an
informed and theory-guided fashion. Given the decentralized swarm architecture, each
team member must provide the means to facilitate this emergent sensor processing
ability. Our fluxotaxis algorithm provides a practical example of how such functionality
can be engineered into a complex system.

6.2.5 Conclusions. Our physicomimetic implementation provides a mathematical
assurance for the swarm’s long-term performance. The local nature of vehicle
interactions results in efficient scalability, and the reactive control is what allows the
swarm to succeed regardless of the environment configuration and initial conditions.
Because both the fluxotaxis CPT algorithm and the swarm control framework have a
rigorous mathematical foundation, fluxotaxis consistently outperforms the biomimetic
methods. This experiment further supports our claims regarding the robustness and
scalability of the physicomimetics control framework. The virtual forces controlling
the swarm formation are identical for all of the experiments, even as the number of
robots increases by an order of magnitude. This fact emphasizes the important role
that a decentralized approach and reliance on strictly local information play in the
design of stable and predictable autonomous systems (Spears et al., 2005b).

7. Summary and future work
Our design of the fluxotaxis CPT algorithm illustrates a robust, theory-guided approach
for accomplishing complex tasks with autonomous robots by intelligently exploiting the
underlying physical principles of the problem. Our simulation experiments demonstrate
that fluxotaxis is able to compute correct navigation waypoints using local sensor
observations in a way that is superior to the most popular biologically inspired

CPT algorithm Arrival time Localization frequency

Casting 4,224.4 224.1
Chemotaxis 5,208.5 1,496.5
Anemotaxis 3,780.5 1,983.6
Fluxotaxis 3,249.9 2,384.8

Table IV.
Average performance of
the three CPT algorithms
over 30 starting locations,
15 swarm sizes, and ten
plumes
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plume-tracing methods. In addition, all three team-oriented CPT strategies we evaluated
showed a gain in performance due to the cooperation between neighboring vehicles.
This is a unique emergent property of the swarm supported by the automatic sensor
aggregation feature of the physicomimetics control framework. By sharing the
information about local flow conditions between neighboring vehicles in the group, each
team member is able to construct a more accurate view of the surrounding plume, which
in turn improves the accuracy of the emitter search algorithm. However, since fluxotaxis
is founded on insights from fluid mechanics, the physics-based foundation allows this
new algorithm to be consistently more effective in achieving the CPT goals than what is
possible with the biomimetic approaches.

Drawing on the findings of our comprehensive study, we confidently conclude that
CPT is inherently a swarm application, which means that significant gains in
performance, such as reductions in the required search time and increased consistency of
the localization estimate are realized in a predictable manner as the size of the swarm is
increased. We also showed that these improvements in the CPT performance require a
scalable algorithm; in other words, the CPT algorithm must manage the information
flow in an efficient and intelligent manner. Our experiments revealed that a class of
single-robot-oriented CPT algorithms like anemotaxis, which do not explicitly take
advantage of the collaborative functionality of the swarm platform, can realize only
small increases in the CPT performance when used on large-sized swarms. This
discovery further reinforces the motivation for our dedicated effort of designing a new
CPT algorithm specifically for swarms – by making sure that our fluxotaxis approach
utilizes all of the cooperative mechanisms offered by the swarm implementation, we
maximize the practical benefit of using the swarm platform for the chemical source
localization problem.

The fact that our fluxotaxis algorithm realizes this increase in CPT performance in a
fully emergent fashion speaks to the power and the flexibility of the physicomimetic
design. First, we took advantage of the existing fluid dynamics understanding to
construct the fluxotaxis algorithm, which allowed us to address significant gaps in the
current state-of-the-art CPT research regarding emitter identification in obstacle-filled
environments with unsteady, turbulent flows (Spears et al., 2009). Next we employed the
physicomimetic swarm control methodology to build a massively parallel, distributed
computer out of simple, inexpensive robots with limited on-board capabilities. The
resulting sensor and computation “mesh” is ideally suited for a variety of in situ analyses
and monitoring activities that benefit from the robust self-organizing behavior of the
grid-like robot formations. For the CPT problem, we identified the physical property of
chemical mass flux flow as the crucial indicator of the location of the chemical source,
and showed how a mathematically derived technique is implemented on simulated
mobile robots. Finally, we demonstrated that this methodical, step-by-step construction
of all the key components of our implementation resulted in a distributed system with
predictable long-term behavior.

We showed that the physics-based fluxotaxis plume-tracing strategy combines the
strengths of the popular chemo- and anemotaxis approaches, and outperforms these two
biomimetic methods in terms of search time and localization accuracy. However, our
experiments have also identified several problem areas where additional work is needed.
One such area is discussed in Section 5.2, where we noted that air turbulence creates
transient concentrations of the chemical that may appear as temporary sources
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to the plume tracing robots. We plan to devise mitigation strategies for transient effects
present in turbulent flows, and to compare the performance of our fluxotaxis algorithm
against some of the recently proposed infotaxis CPT methods as part of our future work.
Another planned improvement is a more accurate modeling of the chemical flow that
takes the movement of the vehicles into account. The current formulation of fluxotaxis
assumes that both the chemical concentration and airflow sensors can provide an
accurate, instantaneous measurement of the plume. However, in practice, issues such as
sensor noise and flow occlusions will violate this assumption, and will require additional
logic from the fluxotaxis algorithm to account for these artifacts. Other challenging
plume-tracing problems we plan to address in the near future include multiple chemical
sources and mobile emitter(s). Given the gains in fluxotaxis performance realized
through an increase of the vehicle fleet size, we feel that our physicomimetic,
swarm-centric approach will be effective in addressing these extended CPT scenarios.

Finally, we want to emphasize that the results discussed here are not limited to
physical models and simulations, but in fact have already been tested in the laboratory
setting with small-scale robotic vehicles. To date, our experiments focused on volatile
organic compounds, and we have carried out a large number of wind tunnel
experiments to study behavior of ethanol plumes in a variety of flow conditions.
Concurrent with our physical modeling and chemical experimental work, we have also
been developing a rugged, outdoor-ready vehicle platform that can support further
investigation of the concepts and ideas presented in this paper.
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Appendix 1. CPT simulator control loop implementation

Algorithm A1. Top-level control operations of the CPT simulator
ALGORITHM: CPT_simulation(lattice)
while (TRUE)

ap_maintain_formation(lattice)
for agent in lattice

agent_do_cpt_strategy(agent)
end–for
move_agents_with_constraints(lattice)

end–while

Appendix 2. CPT algorithm implementations for the seven-robot study

Algorithm B1. The casting algorithm implemented on a seven-robot lattice
ALGORITHM: cast
while (TRUE)

if (lattice is expanding)
if (expansion factor is less than maximum)

increment expansion factor
else

change lattice mode to contraction
end–if

else
if (expansion factor is greater than minimum)

decrement expansion factor
else

change lattice mode to expansion
end–if

end–if
radius ¼ expansion_factor*Ro
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if (horizontal advance is blocked)
reverse horizontal direction

end–if
if (vertical advance is blocked)

reverse vertical direction
end–if
waypoint ¼ direction_unit_vector*Ro

end–while

Algorithm B2. The chemotaxis algorithm implemented on a seven-robot lattice
ALGORITHM: chemotaxis
while (TRUE)

ensure lattice radius and location are within limits
if (lattice is within plume)

execute move_to_max_density
else

excute cast
end–if

end–while

STRATEGY: move_to_max_density
obtain the sensor reading of r across the lattice
move to the location of the maximum r reading

Algorithm B3. The anemotaxis algorithm implemented on a seven-robot lattice
ALGORITHM: anemotaxis
while (TRUE)

ensure lattice radius and location are within limits
if (lattice is within plume and wind sensors detect ~V)

execute move_upstream
else

execute cast
end–if

end–while

STRATEGY: move_upstream
average the direction of ~V across the lattice
move one time step along the 2 ~V direction at maximum speed

Alogrithm B4. The fluxotaxis algorithm implemented on a seven-robot lattice
ALGORITHM: fluxotaxis
while (TRUE)

ensure lattice radius and location are within limits
if (lattice is within plume)

if more than 50% of total r is sensed by the center agent
contract the lattice to minimal radius

else
execute chem._region

end–if
else

execute cast
end–if

end–while
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STRATEGY: chem_region
sense total lattice r over 3 different lattice radii
compute r centroid Cp, where p [ RADIUS{inner,middle,outer}

if (r increases with each radial increase)
move to the centroid of the centroids Cp

else
if (outermost r is greater than innermost)

move to the location of the Couter centroid
else

if (r decreases with each increasing radius)
execute flux_ring

else
execute cast

end–if
end–if

STRATEGY: flux_ring
compute the maximum incoming flux, r ~V, at 3 different lattice radii
if (maximum influx exceeds a flux threshold)

move to the location of the maximum incoming flux, r ~V
else

compute the maximum outgoing flux, r ~V
if (maximum outflux exceeds flux threshold)

move to the location of the maximum outgoing flux
else

execute cast
end–if

end–if

Appendix 3. CPT algorithm implementations for the large swarm study

Algorithm C1. Implementation of the swarm casting procedure
ALGORITHM: casting

if (horizontal advance is blocked)
reverse horizontal direction
broadcast new horizontal direction

end–if
if (vertical advance is blocked)

reverse vertical direction
broadcast new vertical direction

end–if
velocity ¼ direction_vector*time_step

Algorithm C2. Implementation of the swarm chemotaxis algorithm
ALGORITHM: chemotaxis

if (neighbors are present)
find the agent with the highest r reading
compute the local gradient 7r ¼ rmax 2 rself

if (j7rj > 0)
velocity ¼ 7r*time_step

else
execute casting
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else
execute casting

end–if

Algorithm C3. Implementation of the swarm anemotaxis algorithm
ALGORITHM: anemotaxis

if (rself > 0 and j ~Vselfj > 0)

velocity ¼ 2 ~Vself*time_step
else

execute casting
end–if

Algorithm C4. Implementation of the swarm fluxotaxis algorithm
ALGORITHM: fluxotaxis

if (more than one neighbor)
for neighbor in neighbors

execute neighbor_flux(neighbor)
end–for
if (influx detected)

compute bearing unit vector Finflux toward the neighbor with maximum influx
velocity ¼ Finflux*time_step

else if (outflux detected)
compute bearing unit vector Foutflux toward the neighbor with maximum outflux
velocity ¼ Foutflux*time_step

else
execute chemotaxis

end–if
else

execute anemotaxis
end–if

STRATEGY: neighbor_flux
retrieve rneighbor and ~Vneighbor

let u and v be the x and y components of wind velocity ~Vneighbor

let dx and dy be the x and y components of the neighbor separation vector

return rneighbor*j ~Vneighborj*cos arctan v
u

� 	
2 arctan dy

dx

� �� �
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